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Abstract
In order to receive machine learning services
from a cloud-based service provider, consumers
usually send their entire raw data (e.g. an entire
image). However, this models reveals much more
information to the service provider than what is
actually necessary for the execution of the service.
This work shows that, in many cases, only a small
portion of the input is required for the service
provider to offer an accurate prediction. Discov-
ering this subset is one of the main objectives
of this paper. We formulate this problem as a
gradient-based perturbation maximization method
that discovers this subset in the input feature
space with respect to the decision making of the
prediction model used by the provider. After
identifying the essential subset, our framework,
Cloak, suppresses the rest of the features in the
consumer’s input and only sends the essential ones
to the cloud. As such, the service provider can use
those features to return an accurate prediction and
also to improve its service, while at the same time
the privacy of the consumer is better protected.
We also demonstrate in our experiments that by
removing the extra features, the post-hoc fairness
of the classifier is improved as well.

1 Introduction
The computational complexity of Machine Learning (ML)
models has pushed their execution to the cloud. The edge de-
vices on the user side capture and send their data to the cloud
for prediction services. The insight in this paper is that a large
fraction of the data is not relevant to the prediction service and
can be segregated prior to sending the data out, thus enabling
access to the services with much greater privacy. As such,
we propose Cloak, an orthogonal approach to the existing
techniques that mostly rely on cryptographic solutions and
impose prohibitive delays and computational cost. Table 1
summarizes most state-of-the-art encryption-based methods
and their runtime compared to unencrypted execution on
GPUs. As shown, these techniques impose between 318×
to 14,000× slowdown. An image classification inference is
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Table 1: Slowdown of cryptographic techniques vs. con-
ventional GPU execution on Titan Xp and Cloak.

Cryptographic Release Dataset Prediction Time (sec) SlowdownTechnique Year Encry. Conv. Cloak

FALCON (Wagh et al., 2020) 2020 ImageNet 12.96 0.0145 0.0148 906×

DELPHI (Mishra et al., 2020) 2020 CIFAR-100 3.5 0.0112 0.0113 318×

CrypTen (Facebook, 2019) 2019 ImageNet 8.30 0.0121 0.0123 691×

GAZELLE (Juvekar et al., 2018) 2018 CIFAR-100 82.00 0.0112 0.0113 7,454×

MiniONN (Liu et al., 2017) 2017 MNIST 9.32 0.0007 0.0007 14,121×

performed in multiple seconds, an order of magnitude away
from the service-level agreement between users and cloud
providers, which is between 10 to 100 milliseconds according
to MLPerf industry measures (Reddi et al., 2020; MLPerf Or-
ganization, 2020). Such slowdowns will lead to unacceptable
interaction with services that require near real-time response
(e.g., home automation cameras). Cloak provides a middle
ground, where there is a provable degree of privacy while
the prediction latency is essentially unaffected. To that end,
Cloak only sends out the features that the provider essentially
requires to carry out the requested service. Existing privacy
techniques are applicable to scenarios that can tolerate longer
delays, but are not currently suitable for consumer applica-
tions, which rely on interactive prediction services. However,
having no privacy protection is also not desirable.

This paper presents Cloak, a framework that segregates the
features of the data based on their relevance to the target
prediction task. To solve this problem, we reformulate the
objective as a gradient-based optimization problem, that gen-
erates a segregated representation of the input. The intuition
is that if a feature can consistently tolerate addition of noise
without degrading the utility, that feature is not conducive to
the classification task and can be suppressed. By removing
such features, Cloak guarantees that no information about
them can be learned or inferred from the segregated
representation that the consumer sends. Figure 1 shows
examples of conducive features for multiple tasks discovered
by Cloak and the corresponding segregated representation
for an example image. Our differentiable formulation of
finding the scales minimizes the upper bound of the Mutual
Information (MI) between the irrelevant features and the
segregated representation (maximizing privacy) while
maximizing the lower bound of MI between the relevant
features and the generated representation (preserving utility).

Experimental evaluation with real-world datasets of
UTKFace (Zhang & Qi, 2017), CIFAR-100 (Krizhevsky
et al.), and MNIST (LeCun & Cortes) shows that Cloak can
reduce the mutual information between input images and the
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Figure 1: Cloak’s discovered features for target DNN
classifiers (VGG-16) for black-hair color, eyeglasses,
gender, and smile detection. The colored features are
conducive to the task. The 3 sets of features depicted
for each task correspond to different suppression ratios
(SR). AL denotes the range of accuracy loss imposed by
the suppression.
publicized representation by 85.01% with accuracy loss of
only 1.42%. In addition, we evaluate the protection offered
by Cloak against adversaries that try to infer data properties
from segregated representations on CelebA dataset (Liu
et al., 2015). We show that segregated representations
generated for “smile detection” as the target task effectively
prevent adversaries from inferring information about hair
color and/or eyeglasses. We show that Cloak can provide
these interpretations and protections even in a black-box
setting where we do not have access to the service provider’s
model parameters or architecture. We further show that
Cloak can improve the classifier’s fairness.

2 Cloak’s Optimization Problem
This section formally describes the optimization problem and
presents a computationally tractable method towards solving
it. Let x∈Rn be an input, and c⊆x and u⊆x be two disjoint
sets of conducive and non-conducive features with respect to
our target classifier (fθ). We construct a noisy representation
xc =x+r where r∼N(µ,Σ) and Σ is a diagonal covariance
matrix, as we set the elements of the noise to be independent.
This noisy representation helps find the conducive features
and is used to create a final suppressed representation xs that
is sent to the service provider. The goal is to construct xc such
that the mutual information between xc and u is minimized
(for privacy), while the mutual information between xc and
c is maximized (for utility). The is written as the following
soft-constrained optimization problem:

min
xc

I(xc; u)−λI(xc; c) (1)

To solve this problem, we bound the terms of our opti-
mization problem of Equation 1, and then take an iterative
approach (Blundell et al., 2015). To this end, we find an
upper bound for I(xc; u) and a lower bound for I(xc; c).

2.1 Upper bound on I(xc;u)

Since u is a subset of x, the following holds:

I(xc; u)≤I(xc; x)=H(xc)− 1

2
log((2πe)n|Σ|) (2)

Where H(xc|x) is the entropy of the added Gaussian noise.
Here |Σ| denotes the determinant of the covariance matrix.
Then by applying Theorem 8.6.5 from (Cover & Thomas,
2012) which gives an upper bound for the entropy, to xc, we
can write:

I(xc; u)≤ 1
2 log((2πe)

n |Cov(xc)|
|Σ| ) (3)

Since x and r are independent variables and xc =x+r, we
have |Cov(xc)|= |Cov(x)+Σ|. In addition, since covari-
ance matrices are positive semi-definite, we can get the eigen
decomposition of Cov(x) as QΛQT where the diagonal
matrix Λ has the eigenvalues. Since Σ is already a diagonal
matrix, |Cov(x)+Σ|= |Q(Λ+σ2)QT |=

∏n
i=1(λi+σ2

i ).
By substituting this in Equation 3, and simplifying we get
the upper bound for I(xc; u) as the following:

I(xc; u)≤ 1
2 log((2πe)

n∏n
i=1(1+

λi
σ2
i

)) (4)

2.2 Lower bound on I(xc;c)

Theorem 2.1. The lower bound on I(xc;c) is:

H(c)+max
q

Exc,c[logq(c|xc)] (5)

Where q denotes all members of a possible family of
distributions for this conditional probability.

Proof. The lemma and accompanying proof for this theorem
are redacted to save space.
2.3 Loss Function
Now that we have the upper and lower bounds, we can
reduce our problem to the following optimization where we
minimize the upper bound (Equation 4) and maximize the
lower bound (Equation 5):

min
σ,q

1
2 log((2πe)

n∏n
i=1(1+

λi
σ2
i

))+λ
∑

ci,xci
(−logq(ci|xci

)) (6)

We write the expected value in the same equation in the
form of a summation over all possible representations and
conducive features. To make this summation tractable, in
our loss function we replace this part of the formulation
with the empirical cross-entropy loss of the target classifier
over all training examples. We also relax the optimization
further by rewriting the first term. Since minimizing this
term is equivalent to maximizing the standard deviation of
the noise, we change the fraction into a subtraction. Our final
loss function becomes:

L=−log 1
n

∑n
i=0σ

2
i+λEr∼N(µ,σ2),x∼D

[
−

∑K
k=1yklog(fθ(x+r))k

]
(7)
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The second term is the expected cross-entropy loss, over the
randomness of the noise and the data instances. The variable
µ is the mean of the noise distributions. The variableK is the
number of classes for the target task, and yk is the indicator
variable that determines if a given example belongs to class
k. More intuitively, the first term increases the noise of each
feature and provides privacy. The second term decrease the
classification error and maintains accuracy. The parameter
λ is a knob which provides a trade-off between these two.
2.4 Suppressed Representation
After finding the noisy representation xc, we use it to
generate the final suppressed representation xs. By
applying a cutoff threshold T on σ, we generate binary
mask b such that bi = 1 if σi ≥ T , and bi = 0 otherwise.
We create representation xs = (x + r) ◦ b + µs, where
r∼N(0,σ) and µs are constant values that are set to replace
non-conducive features. According to the data processing
inequality (Beaudry & Renner, 2011), the upper bound on
I(xc;u) holds for xs as well, since I(xs;u)≤I(xc;u). The
same inequality also implies that the lower bound achieved
for I(xc;c) does not necessarily hold for xs. To address
this, we write another optimization problem, to find µs such
that cross entropy loss, i.e, minµs

∑K
k=1yk log(fθ(xs))k is

minimized. Solving this guarantees that the lower bound of
Equation 5 also holds for I(xs; c).

3 Cloak Framework
Cloak comprises of two phases: first, an offline phase where
we solve the optimization problems and Second, an online
prediction phase where we suppress the input data. In this
section we discuss details of these two phases, starting from
the details of the offline phase.
3.1 Noise Re-parameterization and Constraints
To solve the optimization problem of Section 2, Cloak’s
approach is to cast the noise distribution parameters as
trainable tensors, making it possible to solve the problem
using conventional gradient-based methods. To be able to
define gradients over the means and variances, we rewrite the
noise sampling to be r=σ◦e+µ, instead of r∼N(µ,σ2),
where e∼N(0,1). The symbol ◦ denotes the element-wise
multiplication of elements of σ and e. We also need to repa-
rameterize σ to limit the range of standard deviation of each
feature (σ). If it is learned through a gradient-based optimiza-
tion, it can take on any value, while we know that variance
can not be negative. In addition, we also do not want the σs to
grow over a given maximum,M . We put this extra constraint
on the distributions, to limit the σs from growing infinitely
(to decrease the loss), taking the growth opportunity from the
standard deviation of the other features. Finally, we define
a trainable parameter ρ and write σ= 1.0+tanh(ρ)

2 M , where
the tanh function is used to constraint the range of theσs, and
the addition of 1 is to guarantee the positivity of the variance.

3.2 Cloak’s Perturbation Training Workflow
Algorithm 1 shows the steps of Cloak’s optimization process.
This algorithm takes the training data (D), labels (y), a
pre-trained model (fθ), and the privacy-utility knob (λ)
as input, and computes the optimized tensor for noise
distribution parameters. During the initialization step, the
algorithm sets the trainable tensor for the means (µ) to 0,
and initializes the substitute trainable tensor (ρ) with a large
negative number. Since the loss (Equation 7) incorporates
expected value over noise samples, Cloak uses Monte
Carlo sampling (Kalos & Whitlock, 1986) with sufficiently
large number of noise samples to calculate te loss. Once
the training is finished, the optimized mean and standard
deviation tensors are collected and passsed to the next phase.
3.3 Feature Segregation and Suppression
To suppress the non-conducive features one simple way is
to send the noisy representations, i.e, adding noise from
the (µ,σ2) to the input to get the representations that are
sent out for prediction. This method, however, suffers from
two shortcomings: first, it does not directly suppress and
remove the features, which could leave the possibility of data
leakage. Second, because of the high standard deviations of
noise, in some cases the generated representation might be
out of the domain of the target classifier, which could have
negative effects on the utility.

Another way of suppressing the non-conducive features is to
replace them with zeros (black pixels in images for example).
This scheme also, suffers from potential accuracy degrada-
tion, as the values we are using for suppression (i.e. the zeros)
might not match the distribution of the data that the classifier
expects. To mitigate this, we find a suppressed representation,
i.e., we train the constant suppression values that need to
replace the non-conducive features. Intuitively, these learned
values reveal what the target classifier perceives as common
among all the inputs from the training set, and what it expects
to see. You can see a comparison of these three schemes in
the experimental results section. Algorithm 2 shows the steps
of this training process. The algorithm finds µs, the values
by which we replace the non-conducive features. The only
objective of this training process is to increase the accuracy,
therefore we use cross-entropy loss as our loss function.

Algorithm 1 Noise Train.
1: Input: D, y, fθ ,m,λ
2: Initialize µ=0, ρ=−10,M≥0
3: repeat
4: Select training batch x from D
5: Sample e∼N(0,1)

6: Let σ=
1.0+tanh(ρ)

2 (M)

7: Let r=σ◦e+µ
8: Gradient step onµ,ρ from Eq. (7)
9: until Algorithm converges
10: Return: µ, σ

Algorithm 2 Suppr. Train.
1: Input: D, y, fθ , σ, µ, b
2: Initialize µs=µ
3: repeat
4: Select training batch x from D
5: Sample r∼N(0,σ2)
6: Let xs=(x+r)◦b+µs
7: Take gradient step on µs from

Er[LCE(fθ(xs), y)]
8: until Algorithm converges
9: Return: µs

3.4 Online Prediction
The prediction (inference) phase is when unseen test inputs
that we protect are sent to the remote service provider
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(c) UTKFace
Figure 2: Privacy-accuracy trade-off.

for classification. First a noise tensor sampled from the
optimized distribution N(0,σ2) is added to the input, then
the binary mask b is applied to the noisy input image. Finally
µs is added to x and the resulting segregated representation
is sent to the service provider. As an example, the last row
of Figure 1 shows representations generated by Cloak.

4 Experimental Results
To evaluate Cloak, we use four real-world datasets on four
Deep Neural Networks (DNNs). Namely, we use VGG-
16 (Simonyan & Zisserman, 2014) and ResNet-18 (He et al.,
2016) on CelebA (Liu et al., 2015), AlexNet (Krizhevsky
et al., 2012) on CIFAR-100 (Krizhevsky et al.), a modified
version of VGG-16 model on UTKFace (Zhang & Qi,
2017), and LeNet-5 (LeCun, 1998) on MNIST (LeCun &
Cortes). The mutual information numbers reported in this
section are estimated over the test set using the Shannon
Mutual Information estimator provided by the Python ITE
toolbox (Szabó, 2014).
4.1 Privacy-Accuracy Trade-Off
Figure 2 shows accuracy loss of the DNN classifiers using
segregated representations vs. the loss in mutual information.
This is the loss in mutual information between the original
image and its noisy representation, divided by the amount of
information in bits in the original image. In this experiment,
we compare Cloak to adding Gaussian perturbation of mean
zero and different standard deviations to all pixels of the
images. For fair comparison, we choose Cloak’s suppression
with noisy representations. For MNIST and UTKFace,
Cloak reduces the information in the input significantly
(93% and 85% respectively) with little loss in accuracy
(0.5% and 2.7%).
4.2 Adversary to Infer Information
To further evaluate the effectiveness of the representations
that Cloak generates, we devise an experiment in which an
adversary tries to infer properties of the segregated repre-
sentations using a DNN classifier. We assume two adversary
models here. First, the adversary has access to a unlimited
number of samples from the segretaed representations,
therefore she can re-train her classifier to regain accuracy
on the segregated representations. Second, a model in which
the adversary’s access to the segregated representation is
limited and therefore she cannot retrain her classifier on the
segregated representations. In this experiment, we choose
smile detection as the target prediction task for which Cloak

generates representations. Then, we model adversaries
who try to discover two properties from the segregated
representations: whether people in images wear glasses or
not and whether their hair is black or not. The adversaries
have pre-trained classifiers for both these tasks.

Figure 4 shows the results of this experiment. Each point in
this figure is generated using a noise map with a Suppression
Ration (SR) noted in the figure. Higher SR means more
features are suppressed. When adversaries do not retrain
their models, using segregated representations with 95.6%
suppression ratio causes the adversaries to almost completely
lose their ability to infer eyeglasses or hair color and reach to
the random classifier accuracy (50%). This is achieved while
the target smile detection task only loses 5.16% accuracy.
When adversaries retrain their models, using representations
with slightly higher suppression ratio (98.3%) achieves
the same goal. But this time, the accuracy of the target
task drops to 78.9%. With the same suppression ratio, the
adversary who tries to infer hair color loses more accuracy
than the adversary who tries to infer eyeglasses. This is
because, as shown in Figure 1, the conducive features of
smile overlap less with the conducive features of hair than
with the conducive features of eyeglasses.
4.3 Black-Box Access Mode
To show the applicability of Cloak, we show that it is possible
for Cloak to protect users’ privacy even when we have limited
access to the target model. We consider a black-box setting
in which we assume Cloak does not have any knowledge of
the target model architecture or its parameters and is only
allowed to send requests and get back responses. In this
setting, following similar methodology to the methodology
described in Shokri et al. (Shokri et al., 2017)we first train
a substitute model that helps us to train Cloak’s represen-
tations. We assume a target service provider that has two
ResNet18 (He et al., 2016) DNNs deployed, one for the task
of black hair color classification, and one for smile detection.
Since we assume no knowledge of the model architecture,
Cloak substitutes the target classifiers with another architec-
ture, i.e, with two VGG-16 DNNs. Cloak substitute models
for the hair and smile tasks have accuracies of 84.9% and
90.9% and the target models have accuracies of 87.3% and
91.8%. After training the substitute model, we apply Cloak
to them to find noise maps and suppressed representations.

Figure 3a and 3b show the results for these experiments.
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Figure 3: (a) and (b) performance of Cloak in a black-box setting and (c) the effect of different suppression schemes
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Figure 4: Protection from adversaries that infer black-
hair color or eyeglasses from the segregated represen-
tations.
Cloak performs similarly effective in both white-box and
black-box settings and for both hair color classification and
smile detection tasks. The reason is that the DNN classifiers
of the same task are known to learn similar patterns and
decision boundaries (Papernot et al., 2017; Arpit et al., 2017).
4.4 Post-hoc Effects of Cloak on Fairness
Cloak, by removing extra features, not only benefits privacy
but can also remove unintended biases of the classifier,
resulting in a more fair classification. In many cases the
features that bias the classifiers highly overlap with the non-
conducive features that Cloak discovers. Therefore, applying
Cloak can results in the predictions that are more fair, without
the need to change the classifier. This subsection evaluates
this positive side-effect of Cloak by adopting a setup similar
to that of Kairouz et al. (Kairouz et al., 2019). We measure
the fairness of the black-hair color classifier using the
segregated representations, while considering gender to be
a sensitive variable that can cause bias. We use two metrics
for our experiments, the difference in Demographic Parity
(∆DemP ), and the difference in Equal Opportunity (∆EO).
Figure 5 shows that as Cloak suppresses more non-conducive
features, the fairness metrics improve significantly. We see
0.05 reduction in both metrics due to the removal of gender
related non-conducive features. It is noteworthy that the
biasing features in the hair color classifier are not necessarily
the gender features shown in Figure 1. Those features show
what a gender classifier uses to make its decision.
4.5 Different suppression schemes
Figure 3c shows the accuracy of three suppression schemes
described in Section 3.3 on the smile detection task (on
CelebA/ VGG-16). Among different schemes, suppression
using the trained values yields better accuracy for the
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Figure 5: Shows effects of Cloak on post-hoc fairness.
same suppression ratio, since it captures what the classifier
expects to receives. Suppression with noise (sending noisy
representations) performs slightly worse than training, and
that is mainly due to the uncertainty brought by the noise.

5 Related Work
For training, the literature abounds with the studies that
use noise addition as a randomization mechanism to protect
privacy (Chaudhuri et al., 2009; 2013; Dwork & Roth, 2014;
Abadi et al., 2016; Shokri & Shmatikov, 2015; Papernot
et al., 2016; 2018). Privacy on offloaded computation can
also be provided by the means of cryptographic tools such as
homomorphic encryption and/or Secure Multiparty Compu-
tation (SMC) (Hesamifard et al., 2017; Juvekar et al., 2018;
Mohassel & Zhang, 2017; Dowlin et al., 2016; Liu et al.,
2017; Mishra et al., 2020; Wagh et al., 2020; Agrawal et al.,
2019). However, these approaches suffer from a prohibitive
computational costs (See Table 1), on both cloud and user
side, exacerbating the complexity and compute-intensivity
of neural networks especially on resource-constrained edge
devices. Only a handful of studies have addressed privacy
of prediction by adding noise to the data (Osia et al., 2020;
Mireshghallah et al., 2020). Shredder (Mireshghallah et al.,
2020) proposes to heuristically sample and reorder additive
noise at run time based on the previously collected additive
tensors that the DNN can tolerate (anti-adversarial patterns).
Due to the heuristic and pattern-based nature of this prior
work, it does not provide formal guarantees. In contrast,
Cloak’s approach is to directly learn conducive features and
suppress non-conducive ones with learned constant values.

6 Conclusion
The surge in the use of machine learning is driven by
growth in data and compute power. The data mostly comes
from people (Thompson & Warzel, 2019) and includes an
abundance of private information. We propose Cloak, a
mechanism that finds features in the data that are unimportant
and non-conducive for a cloud ML prediction model.
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